Bilirubin oxidase based enzymatic air-breathing cathode: Operation under pristine and contaminated conditions.
نویسندگان
چکیده
The performance of bilirubin oxidase (BOx) based air breathing cathode was constantly monitored over 45 days. The effect of electrolyte composition on the cathode oxygen reduction reaction (ORR) output was investigated. Particularly, deactivation of the electrocatalytic activity of the enzyme in phosphate buffer saline (PBS) solution and in activated sludge (AS) was evaluated. The greatest drop in current density was observed during the first 3 days of constant operation with a decrease of ~60 μA cm(-2) day(-1). The rate of decrease slowed to ~10 μA cm(-2) day(-1) (day 3 to 9) and then to ~1.5 μA cm(-2)day(-1) thereafter (day 9 to 45). Despite the constant decrease in output, the BOx cathode generated residual current after 45 days operations with an open circuit potential (OCP) of 475 mV vs. Ag/AgCl. Enzyme deactivation was also studied in AS to simulate an environment close to the real waste operation with pollutants, solid particles and bacteria. The presence of low-molecular weight soluble contaminants was identified as the main reason for an immediate enzymatic deactivation within few hours of cathode operation. The presence of solid particles and bacteria does not affect the natural degradation of the enzyme.
منابع مشابه
Design and Fabrication of Glucose/O2 Enzymatic Biofuel Cell
Enzyme-based biofuel cells (EBFCs) are systems that use a variety of organic compounds to produce electricity through oxido-reductase enzymes, such as oxidase or dehydrogenase as biocatalysts immobilized on electrodes. In this study, a single-chamber EBFC consisting of carbon electrodes that operating at ambient temperature in phosphate buffer, pH 7 is reported. The EBFC anode was based on gluc...
متن کاملEffect of enzymatic orientation through the use of syringaldazine molecules on multiple multi-copper oxidase enzymes.
The effect of proper enzyme orientation at the electrode surface was explored for two multi-copper oxygen reducing enzymes: Bilirubin Oxidase (BOx) and Laccase (Lac). Simultaneous utilization of "tethering" agent (1-pyrenebutanoic acid, succinimidyl ester; PBSE), for stable enzyme immobilization, and syringaldazine (Syr), for enzyme orientation, of both Lac and BOx led to a notable enhancement ...
متن کاملImprovement of a direct electron transfer-type fructose/dioxygen biofuel cell with a substrate-modified biocathode.
The fructose/dioxygen biofuel cell, one of the direct electron transfer (DET)-type bioelectrochemical devices, utilizes fructose dehydrogenase (FDH) on the anode and multi-copper oxidase such as bilirubin oxidase (BOD) on the cathode as catalysts. The power density in the literature is limited by the biocathode performance. We show that the DET-type biocathode performance is greatly improved, w...
متن کاملA membraneless air-breathing hydrogen biofuel cell based on direct wiring of thermostable enzymes on carbon nanotube electrodes.
A biocathode was designed by the modification of a carbon nanotube (CNT) gas-diffusion electrode with bilirubin oxidase from Bacillus pumilus, achieving high current densities up to 3 mA cm(-2) for the reduction of O2 from air. A membraneless air-breathing hydrogen biofuel cell was designed by combination of this cathode with a functionalized CNT-based hydrogenase anode.
متن کاملRechargeable membraneless glucose biobattery: Towards solid-state cathodes for implantable enzymatic devices
Enzymatic biobatteries can be implanted in living organisms to exploit the chemical energy stored in physiological fluids. Generally, commonly-used electron donors (such as sugars) are ubiquitous in physiological environments, while electron acceptors such as oxygen are limited due to many factors including solubility, temperature, and pressure. The wide range of solid-state cathodes, however, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioelectrochemistry
دوره 108 شماره
صفحات -
تاریخ انتشار 2016